top of page

3_30_M
Programmēšana Python valodā datu analītiķiem

​Mācību formāts 

Tiešsaistē

Ilgums

80 mācību stundas

Cena

Mācību maksa tiek segta ar NVA kuponu

Tuvākais kurss:

2024. gada 22. aprīlis

-

2024. gada 17. jūnijs

pirmdienās un trešdienās

,

18:00

-

21:15

sestdienās

,

10:00

-

13:45

Kursa mērķis

Sniegt zināšanas un Python programmēšanas pamatprasmes datu apstrādei un rutīnas darbu automatizācijai.

Mērķauditorija

Ikviens, kurš vēlās vēlas izmantot Python iespējas datu analīzē, un ir nodarbināta persona.

Kursa mērķis

Sniegt zināšanas un Python programmēšanas pamatprasmes datu apstrādei un rutīnas darbu automatizācijai.

Mērķauditorija

Ikviens, kurš vēlās vēlas izmantot Python iespējas datu analīzē, un ir nodarbināta persona.

Tehnoloģijas

Windows, Python

Mācīšanās rezultāti

Pēc veiksmīgas izglītības programmas apgūšanas dalībnieks būs spējīgs:


1. Pielietot Python programmēšanas vidi
2. Pielietot Python objektorientētās programmēšanas metodes
3. Izstrādāt un dokumentēt algoritmus datu apstrādei
4. Deklarēt un veikt darbības ar vienkāršiem datu tipiem, tai skaitā virknēm un skaitļiem
5. Deklarēt un veikt darbības ar sakārtotām un nesakārtotām datu struktūrām, tai skaitā sarakstiem un vārdnīcām
6. Deklarēt datu masīvus
7. Izmantot datu modeļus
8. Veidot zarošanās un loģiskās izteiksmes
9. Veidot loģiskos operatorus un cikla konstrukcijas
10. Strukturēt kodu atkārtotai izmantošanai: definēt un izmantot funkcijas, klases un moduļus
11. Pārvaldīt failus un direktorijus, izmantojot Python kodu
12. Apstrādāt izņēmumus
13. Izstrādāt lietotāja saskarnes Python valodā
14. Testēt un validēt izstrādāto kodu
15. Dokumentēt izstrādāto kodu
16. Sadarboties izstrādātāju, testētāju un pasūtītāja komandā

e-CF 4.0


  • D.7. Data Science and Analytics L1

Caurviju kompetences


  • Komunikācija

  • Pašattīstība

  • Darbs komandā

  • Atbildība

DIGCOMP 2.2


Datu zinātne, datu analīze un datu vizualizācija,  6.līmenis


E-kompetences un caurviju kompetences

E-kompetences un caurviju kompetences

Add paragraph text. Click “Edit Text” to update the font, size and more. To change and reuse text themes, go to Site Styles.

Add paragraph text. Click “Edit Text” to update the font, size and more. To change and reuse text themes, go to Site Styles.

Add paragraph text. Click “Edit Text” to update the font, size and more. To change and reuse text themes, go to Site Styles.

e-CF 4.0


  • D.7. Data Science and Analytics L1

Caurviju kompetences


  • Komunikācija

  • Pašattīstība

  • Darbs komandā

  • Atbildība

DIGCOMP 2.2


Datu zinātne, datu analīze un datu vizualizācija,  6.līmenis


E-kompetences un caurviju kompetences

E-kompetences un caurviju kompetences

e-CF 4.0


  • D.7. Data Science and Analytics L1

Caurviju kompetences


  • Komunikācija

  • Pašattīstība

  • Darbs komandā

  • Atbildība

DIGCOMP 2.2


Datu zinātne, datu analīze un datu vizualizācija,  6.līmenis


Priekšzināšanas

Vismaz vidējā izglītība. Datorlietošanas prasmes vidējā līmenī.

Priekšzināšanas

Vismaz vidējā izglītība. Datorlietošanas prasmes vidējā līmenī.

Kursa tēmas

1. Datorprogrammēšanas pamati:
   1.1. Programmas izpildīšanas principi
   1.2. Programmēšanas valodas definēšanas un konstruēšanas principi
   1.3. Atšķirība starp kompilāciju un interpretāciju
   1.4. Python programmēšanas valoda un tās pozicionēšana starp citām valodām
   1.5. Python valodas dažādas versijas



2. Python programmēšanas vides instalēšana un konfigurēšana


3. Objektorientētās programmēšanas principi un to realizācija Python


4. Datu apstrādes algoritmi un to izstrāde, attēlošana, aprakstīšana


5. Vienkāršu datu tipi (skaitļi, virknes, masīvi), to deklarēšana un apstrāde


6.  Sakārtotas un nesakārtotas datu struktūras



7.  Python datu formatēšanas un izvades pamatmetodes:
   7.1. Mainīgo lielumu jēdziens un mainīgo nosaukumdošanas noteikumi
   7.2. Skaitliskās operācijas
   7.3. Piešķiršanas operators
   7.4. Izteiksmju veidošana Pythonā un  noteikumi, kas reglamentē izteiksmju veidošanu
   7.5. Datu ievadīšana un konvertēšana



8. Zarošanās un loģiskās izteiksmju veidošana un to pierakstīšana Python sintaksē


9. Loģisko un cikla operatoru veidošana


10. Python koda strukturēšana atkārtotai izmantošanai, definējot un veidojot funkcijas, klases un moduļus


11. Failu un direktoriju, pārvaldīšana izmantojot Python kodu


12. Izņēmumu apstrāde


13. Python koda atkļūdošana un uzlabošana


14. Tīmekļa lietojumprogrammu saskarņu izmantošana


15. Tabulāru datu apstrādes pamati

Materiāli kursa dalībniekiem

Pasniedzēja sagatavoti mācību materiāli latviešu valodā.

Mācību norise un nepieciešamais aprīkojums

Nodarbības notiek tiešsaistē divus darba dienas vakarus nedēļā un četras sestdienas. Sekmīgai dalībai mācībās dalībniekam ir nepieciešams dators ar Windows operētājsistēmu, webkameru un mikrofonu, kā arī stabils interneta pieslēgums. Mācību programmas apgūšanai nepieciešamo programmatūru nodrošina izglītības iestāde.

Darbs komandā

Praktiska pieredze

Projekta izstrāde

Vēlies pievienoties mācību grupai?

Piesakies un rezervē sev vietu.

bottom of page